HIV 薬剤耐性検査推奨法 第3版

平成 28 年度 日本医療研究開発機構エイズ対策実用化研究事業

国内流行 HIV 及びその薬剤耐性株の長期的動向把握に関する研究

研究協力者: 吉田 繁 北海道医療大学

研究代表者: 吉村 和久, 菊地 正 国立感染症研究所エイズ研究センター

【推奨法とその活用について】

HIV 薬剤耐性検査推奨法は本検査の外部精度評価に参加した施設が実施する方法をもとに、プロテアーゼ (PR)・逆転写酵素 (RT) 領域の増幅プライマー (表 1) とシーケンスプライマー (表 2) を推奨したものです。2010年にJEQS_RM2010、2014年にJEQS_RM2014BとJEQS_RM2014C、2015年に推奨するシーケンスプライマーが設定されました。2016年度外部精度評価に参加した 11 施設中 3 施設がJEQS_RM2010、2 施設がJEQS_RM2014Bを使用しています。推奨法では、既報の耐性変異が生じる塩基配列を含まず、サブタイプBのHIV株間で比較的保存されている塩基配列に設定されたプライマーを選択していますが、全てのHIVに適しているわけではありません。したがって、増幅不良や解析困難などの不具合に対応するために複数の方法により検査を進めることが望まれます。推奨法は主検査法として、もしくは不具合時に実施する第 2、第 3 選択の検査法として活用することを推奨します。

【シーケンスプライマーの選択について】

シーケンスプライマーの種類と数は使用するシーケンサーの種類と解析条件に依存するため、その選択は施設で検討する必要があります。ただし、原則としてフォワードプライマーとリバースプライマーにより同一塩基配列をカバレッジが2以上で決定できるシーケンスプライマーを選択することが望まれます。また、PR上流にはindel (insertion/deletion)変異がしばしば見られることから、推奨法で設定したフォワードプライマー(DRPR05, DRPR01M)でも質の高いエレクトロフェログラムを得ることが困難な場合があります。この場合、現時点では2つのリバースプライマー(B2, DRPR02L)、もしくは、それらに加えてPRの5'側に設定されたフォワードプライマーPRO4(表4)の使用が対策として考えられます。ただし、PRO4ではPRの10,11番耐性変異に関与する塩基配列の判読はできません。

【反応条件の設定について】

推奨法はプライマーのみを推奨するものであるため、各施設で使用する試薬や機器に適した条件を設定する必要があります。条件検討の参考として推奨法設定の検討で使用した方法(参考資料 1)、ならびに 2016 年度外部精度評価において良好な成績で、かつ、推奨法を使用している施設の方法(参考資料 2)を記載しました。

【インテグラーゼ領域の薬剤耐性検査について】

インテグラーゼ領域の HIV 薬剤耐性検査には推奨法の設定はありませんが,2016 年度外部精度評価に参加した 11 施設中 10 施設が同じ増幅プライマーを使用しています. したがって,現時点ではこれらの増幅プライマーの使用を推奨します(参考資料 4).

【精度管理について】

検査の質の管理には内部精度管理と外部精度評価が重要です。本検査には市販のコントロールが供給されていないため、各施設で同一ロットの患者血漿を保管し、定期的に解析することで内部精度管理を実施することが望まれます。また、術者が代わることでの技術的質の低下や術者間差を防止するために、標準業務手順書(SOP、standard operating procedure)の作製と遵守が重要です。内部精度管理や技術評価を実施するにあたりコントロールとして外部精度評価サンプル(合成 RNA)が必要な際には連絡をお願い致します(連絡先:吉田繁 e-mail: shiyoshi@hoku-iryo-u.ac.jp). 外部精度評価については定期的に実施していきます。実施の際に

は過去に参加していただいた施設には事前連絡をいたしますが、初めて参加される際にはご連絡をお願い致します(連絡先:吉田繁 e-mail: shiyoshi@hoku-iryo-u.ac.jp).

また、検体の保存や取扱に関しましては「遺伝子関連検査 検体品質管理マニュアル MM5-A1」(JCCLS 日本臨床検査標準協議会)を参考にして下さい.

表 1. 推奨法 JEQS_RM2010, 2014B, 2014C の増幅プライマー

	Primers for RT-PCR			Primers for 2 nd PCR		
Method	Forward	Reverse	Length (bp)	Forward	Reverse	Length (bp)
JEQS_RM2010	K1	U13	1773	K4	U12	1584
JEQS_RM2014B	SK38	RT20de	1919	DRPRO5	DRRT4L	1352
JEQS_RM2014C	KL1S	RT20de	1716	KL2S	DRRT4L	1368

表 2. 推奨するシーケンスプライマー

	Primers for	sequencing				
Protease - forward	DRPRO5	DRPR01M	_	_	_	_
Protease - Reverse	B2	DRPR02L	_	_	_	_
RT - Forward	T12	DRRT3	DRRT14	DRRT16	DRRT26	DRRT27
RT - Reverse	DRRT4L	DRRT10	DRRT13	DRRT15L	DRRT28	DRRT29

名古屋医療センターの松田先生より情報提供して頂いたシーケンスプライマー (下線)

表 3. プライマーの配列と位置

Primer	Polarity	Sequences 5'-3'	Position
SK38	F	ATAATCCACCTATCCCAGTAGGAGAAAT	1544-1571
RT20de	R	CTGCCAGTTCTARYTCTGCTTC	3462-3441
DRPRO5	F	AGACAGGYTAATTTTTTAGGGA	2074-2095
DRRT4L	R	TACTTCTGTTAGTGCTTTGGTTCC	3425-3402
KL1S	F	ACCTTGTTGGTCCAAAATGCGA	1747-1768
KL2S	F	GAAAGATTGTACTGAGAGACAGGCTAA	2058-2084
K1	F	AAGGGCTGTTGGAAATGTGG	2020-2039
U13	R	CCCACTCAGGAATCCAGGT	3792-3774
K4	F	GAAAGGAAGGACACCAAATGA	2039-2059
U12	R	CTCATTCTTGCATATTTTCCTGTT	3622-3599
DRPR01M	F	AGAGCCAACAGCCCCACCAG	2148-2167
B2	R	CTAGGTATGGTAAATGCAGT	2950-2931
DRPR02L	R	TATGGATTTTCAGGCCCAATTTTTGA	2716-2691
T12 (DRRT12)	F	CCAGTAAAATTAAAGCCAG	2574-2592
DRRT3	F	ACTGCATTTACCATACCTAGT	2931-2951

DRRT10	R	CAGTCCAGCTGTCTTTTTCTG	3309-3289
DRRT13	R	AGGTATGGTAAATGCAGTATA	2948-2928
DRRT14	F	ATATCAGTACAATGTGCTTCC	2978-2998
DRRT15L	R	TCCCACTAACTTCTGTATGTCATTG	3335-3311
DRRT16	F	GAATCTGTGGACATAAAGCTA	2446-2466
DRRT26	F	CAAAAATTGGGCCTGAAAATCC	2692-2713
DRRT27	F	AACTCAAGACTTCTGGGAAGT	2798-2818
DRRT28	R	TGGAATATTGCTGGTGATCC	3031-3012
DRRT29	R	GGCTCTAAGATTTTTGTC	3058-3041

リファレンス配列: HXB2, K03455

【参考資料1】推奨法設定の検討に使用した試薬と反応条件

推奨法 JEQS_RM2014B, JEQS_RM2014C の設定の検討に使用した試薬と反応条件を記します.

 2^{nd} PCR 終了後の増幅産物をアガロースゲル電気泳動で確認した際,目的サイズ(約 1.3-1.6 kb)よりも大きいサイズのバンド(約 1.7-1.9 kb)が観察される場合があります.これは RT-PCR 由来のバンドであり,原因としてはウイルス量が高いこと,増幅効率が高い RT-PCR 試薬を使用していることが考えられます.そのまま操作を継続しても塩基配列の決定は可能です.

1. RNA抽出

QIAamp Viral RNA Mini Kit (QIAGEN), 添付マニュアルに従う.

2. RT-PCR

PrimeScript II High Fidelity One Step RT-PCR Kit (TaKaRa)

試薬	量 (μ1)
2 x One Step High Fidelity Buffer	12.5
PrimeScript II RT Enzyme Mix	0.5
PrimeSTAR GXL for 1 step RT-PCR	2
Forward primer (10 μ M)	1
Reverse primer (10 μ M)	1
Template RNA	5
RNase Free dH ₂ O	Up to $25\mul$

 $^{45^{\}circ}$ C, $15 \text{ min } \rightarrow 94^{\circ}$ C, 2 min

3. 2nd PCR

KOD Plus ver2 (TOYOBO)

試薬	量 (μ1)
10 x buffer for KOD plus ver2	2.5
2mM dNTPs	2.5
$25 \mathrm{mM}~\mathrm{MgSO4}$	1.5
KOD plus	0.5
Forward primer (10 μ M)	1
Reverse primer (10 μ M)	1
Template	1
RNase Free dH ₂ O	Up to $25\mu\mathrm{l}$

^{94°}C, 2min

 $[\]rightarrow$ {98°C, 10 sec \rightarrow 52°C, 15 sec \rightarrow 68°C, 20 sec (10 sec/kb)} 38 cycles

 $[\]rightarrow$ {98°C, 10sec \rightarrow 54°C, 30 sec \rightarrow 68°C, 90 sec (1 min/kb)} 30 cycles

4. PCR 産物の精製

QIAquick PCR Purification Kit (QIAGEN), 添付マニュアルに従う

5. シークエンス反応

BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher)

シーケンスプライマー: DRPRO5, DRRT4L, T12, B2 (詳細は表 3 を参照)

試薬	量 (μ1)
BigDye terminator v3.1	2
5 x sequencing buffer	4
Sequence primer (1 μ M)	3.2
Template	1
RNase Free dH ₂ O	Up to $20\mul$

 96° C, 1 min

 \rightarrow (96°C, 10 sec \rightarrow 50°C, 5 sec \rightarrow 60°C, 4 min) 25 cycles

6. 未反応 Dye の除去

FastGene Dye Terminator Removal kit (日本ジェネティクス), 添付マニュアルに従う.

7. Sequencer

ABI 3500 Genetic Analyzer (ABI)

POP7/50cm キャピラリ

8. Assemble & Editing

SeqScape v2.7

Mix cut-off value 10%

【参考資料 2】外部精度評価の成績が良好であった施設のプロトコール

施設 1 (推奨法 JEQS_RM2010 を使用)

1. RNA 抽出

MagNA Pure Compact Nucleic Acid Isolation kit (Roche), 添付マニュアルに従う

2. RT-PCR

PrimeScript II High Fidelity One Step RT-PCR (TaKaRa), 添付マニュアルに従う

プライマー: K1/U13

RNA 量 / 反応液量: 5 / 25 μ L

 45° C, $10 \text{ min } \rightarrow 94^{\circ}$ C, 2 min

 \rightarrow (98°C, 10 sec \rightarrow 52°C, 10 sec \rightarrow 68°C, 15 sec) 40 cycles

3. 2nd PCR

PrimeSTAR GXL (TaKaRa), 添付マニュアルに従う

プライマー: K4/U12

Template 量 / 反応液量: 2 / 25 μ L

 $(98^{\circ}\text{C}, 10 \text{ sec} \rightarrow 55^{\circ}\text{C}, 10 \text{ sec} \rightarrow 68^{\circ}\text{C}, 15 \text{ sec})$ 40 cycles

4. PCR 産物の精製

MultiScreen (Millipore), 添付マニュアルに従う

5. シークエンス反応

BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher), 添付マニュアルに従うシーケンスプライマー: F, B3, L, A2, A3, U12, T, PRO4 (詳細は表 4 を参照)

6. 未反応 dye の除去

BigDye Xterminator (Thermo Fisher),添付マニュアルに従う

7. Sequencer

3500xL/3500xL Dx Genetic Analyzer (ABI)

POP7/50cm キャピラリ

8. Assemble & Editing

SeqScape v3.0

Mix cut-off value 10%

施設 2 (推奨法 JEQS_RM2014B を使用)

1. RNA抽出

QIAamp viral RNA mini kit (QIAGEN), 添付マニュアルに従う

2. RT-PCR

PrimeScript One Step RT-PCR Kit Ver.2 (TaKaRa), 添付マニュアルに従う

プライマー: SK38/RT20de

RNA 量 / 反応液量: 4 / 25 µ L

 50° C, $30 \text{ min } \rightarrow 94^{\circ}$ C, 2 min

 \rightarrow (94°C, 30 sec \rightarrow 50°C, 30 sec \rightarrow 72°C, 2 min) 35 cycles

3. 2nd PCR

EmeraldAmp PCR Master Mix (TaKaRa),添付マニュアルに従う

プライマー: DRPRO5/DRRT4L

Template 量 / 反応液量: 1 / 25 μ L

98°C, 15 sec

 $\rightarrow (98^{\circ}\text{C}, 10 \text{ sec} \rightarrow 54^{\circ}\text{C}, 30 \text{ sec} \rightarrow 72^{\circ}\text{C}, 1 \text{ min } 30 \text{ sec})$ 30 cycles

4. PCR 産物の精製

ゲル切り出し→凍結→遠心→上清をシークエンス反応のテンプレートに用いる

5. シークエンス反応

BigDye Terminator v1.1 Cycle Sequencing Kit (Thermo Fisher), 添付マニュアルに従うシークエンスプライマー: Prots10, Prots20, RT12, RT3R, DRRT4L (詳細は表 4 を参照)

6. 未反応 dye の除去

BigDye Xterminator (Thermo Fisher),添付マニュアルに従う

7. Sequencer

3130 Genetic Analyzer(ABI)

POP7/50cm キャピラリ

8. Assemble & Editing

4Peaks

Mix cut-off value 25%

表 4. 施設 1,2 で使用されているシーケンスプライマーの配列と位置

Primer	Polarity	Sequences 5'-3'	Position
F	R	AGTATTGTATGGATTTTCAGGC	2723-2702
B3	R	CTGGCTTTAATTTTACTGGTA	2592-2572
L^*	R	TGATCCTTTCCATCCCTG	3017-3000
A2	F	TTAAAGCCAGGAATGGATG	2583-2601
A3	F	ATACTGCATTTACCATACC	2929-2947
U12	R	CTCATTCTTGCATATTTTCCTGTT	3622-3599
T**	F	ACAGAAATGGAAAAGGAAGG	2664-2683
PRO4	F	TCACTCTTTGGCAACGACCC	2260-2279
Prots10	F	TCAGAGCAGACCAGAGCCAACAGC	2136-2159
Prots20	R	TTCTGTCAATGGCCATTGTTTAAC	2633-2610
RT12	F	CCAGTAAAATTAAAGCCAG	2574-2592
RT3R	R	ACTAGGTATGGTAAATGCAGT	2951-2931
DRRT4L	R	TACTTCTGTTAGTGCTTTGGTTCC	3425-3402

^{*} 配列内に RT 151 番耐性変異が含まれる

【参考資料3】使用が好ましくないPR-RT 増幅用プライマー

今までの外部精度評価ならびに配列情報から、使用が好ましくないプライマーを表 5 に示します。耐性変異が 生じることで反応性が低下することが考えられます。

表 5. 使用が好ましくない PR-RT 増幅用プライマー

Primer	理由	Sequences 5'-3'	Position
DRRT1L	配列内にプロテアーゼ 46,47,48,50,53 番耐性変	ATGATAGGGGGAATTGGAGGTTT	2388-2410
	異が含まれる		
DRRT7L	配列内にプロテアーゼ 82,83,84,85 番耐性変異	GACCTACACCTGTCAACATAATTGG	2485-2509
	が含まれる		
MS2510F	配列内にプロテアーゼ 82,83,84,85 番耐性変異	TAGGACCTACACCTGTCAACATAAT	2482-2510
	が含まれる	TGGA	
DRRT6L	反応性が低い	TAATCCCTGCATAAATCTGACTTGC	3372-3348

リファレンス配列: HXB2, K03455

^{**} 配列内に RT 40,41 番耐性変異が含まれる

【参考資料4】インテグラーゼ領域の薬剤耐性検査

2016 年外部精度評価に参加した 11 施設中 10 施設が使用する増幅プライマーを表 6 に示します。増幅プライマーは施設によってプライマー名が異なるため,便宜的な名前を付けています。表 7 には使用されている全シーケンスプライマーを示します。施設により使用するシーケンスプライマーの種類と数は異なり,2ndPCR のフォワードプライマー($C_INT-2^{nd}_F$)とリバースプライマー($D_INT-2^{nd}_R$)のみ使用している施設が 5/11,それらを含む 4 種類のシーケンスプライマーを使用している施設が 5/11,5 種類以上が 1/11 施設あります。PCR の条件は各施設で使用している試薬に最適化が必要です。参考として参加施設で採用しているアニーリング温度を示します(表 9)。【参考資料 2】の施設 1,2 では 1,2 では 1,2 では 1,2 では 1,3 では 1,4 で 1,4

表 6. インテグラーゼの増幅プライマー

ます.

	Primers for RT-PCR			Primers for 2 nd PCR		
Method	Forward	Reverse	Length (bp)	Forward	Reverse	Length (bp)
HEOG DIA DIE	A_INT-	B_INT-	1226	C_INT-	D_INT-	1072
JEQS_RM_INT	1 st _F	1^{st} _R	1226	2^{nd} _F	$2^{nd}R$	1073

表 7. インテグラーゼのシーケンスプライマー

	Primers for sequencing (使用施設数)					
Forward	INT-2ndF_C (10)	IN07 (1)	DRIN03 (2)	IN11 (2)	INT-F1 (2)	DRIN13 (1)
	IN313S (1)	IN-F3 (1)	DRIN17 (1)	_	_	_
Reverse	INT-2ndR_D (9)	IN536A (1)	IN14 (2)	R-4769 (1)	INT-R1 (2)	DRIN12 (1)

表 8. プライマー配列と位置

Primer	Polarity	Sequences 5'-3'	Position
A_INT-1 st _F	F	CAGACTCACAATATGCATTAGG	4039-4060
B_INT-1 st _R	R	CCTGTATGCAGACCCCAATATG	5264-5243
C_INT-2 nd _F	F	CTGGCATGGGTACCAGCACACAA	4146-4168
D_INT-2 nd _R	R	CCTAGTGGGATGTGTACTTCTGAACTTA	5219-5192
IN07	F	CATGGGTACCAGCACAAAG	4150-4170
DRIN03	F	TGGAGGAAATGAACAAGTAGATAAATTAG	4175-4203
IN11	F	ATGCATGGACAAGTAGACTG	4377-4396
INT-F1	F	AGCCAGTGGATATATAGAAGCAGAAGT	4466-4492
DRIN13	F	CATGTAGCCAGTGGATATATAGA	4461-4483
IN313S	F	GCAGGAAGATGGCCAG	4542-4557
IN-F3	F	ATGGCAGTATTCATCCACAATT	4761-4782
IN536A	R	GCCATTTGTACTGCTGTCTTAA	4765-4744
IN14	R	TGAATACTGCCATTTGTACTG	4773-4753
R-47696	R	TACTGCCATTTGTACTGCTG	4769-4750

INT-R1	R	TGTCTACTATTCTTTCCCCTGCACT	4836-4812
DRIN17	F	GTGCAGGGGAAAGAATAGTAGAC	4813-4835
DRIN12	R	ACTACTGCCCCTTCACCTTTCC	4978-4957

表 9. インテグラーゼ増幅 PCR のアニーリング温度

	Annealing temp (°C)			
	Average	SD	Median	Range
RT-PCR	53.1	1.9	52	50-55
2 nd PCR	55.9	2.4	54	55-60

【参考資5】使用が好ましくない INT 増幅用プライマー

配列情報から、使用が好ましくないプライマーを以下に示します。耐性変異が生じることで反応性が低下することが考えられます。

表 10. 使用が好ましくない INT 増幅用プライマー

Primer	理由	Sequences 5'-3'	Position
DRIN16	配列内にインテグラーゼ 74 番耐性変異が含ま	GCTACATGAACTGCTACCAGG	4468-4448
	れる		
F-4653	配列内にインテグラーゼ 143, 145, 146, 147,	CCCTACAATCCCCAAAGTC	4653-4671
	148 番耐性変異が含まれる		
DRIN10	配列内にインテグラーゼ 263 番耐性変異が含	ACAATCATCACCTGCCATCTGTT	5069-5047
	まれる		

【参考資 6】Assemble, editing について

本検査の assemble, editing は施設により使用するソフトウェアや条件が異なります(表 11,12). 一般的にミックス塩基の判定基準である mixture cut-off value は 20-25%がデフォルトとして用いられますが、今までの外部精度評価の結果では 10%が適切であると思われます. ただし、エレクトロフェログラムで明かな基線の乱れがなく、QV が 25-30 以上であることが望ましいです.

表 11. 参加施設で使用されている assemble, editing のソフトウェア

ソフトウェア	施設数
Sequencing analysis software (ABI) / GENETYX	1
(GENETYX Corporation)*1	
SeqScape (ABI)	4
Sequencing analysis software (ABI) / 目視	1
Sequencing analysis software (ABI)	1
4Peaks*2	1
Chromas Pro*3/MEGA6	1
GENETYX*1 / ATSQ	1
ATGC bundled with GENETYX*1	1

^{*1} https://www.genetyx.co.jp/

表 12. 参加施設で採用しているミックス塩基のカットオフ値

Mixture Cut-Off value	施設数
5%	1
10%	4
20%	1
25%	3
エレクトロフェログラムで主要ピーク高の 1/4	1
設定なし(目視)	1

4Peaks (Mac), MEGA は無料ソフトウェアですが他は有料です.

^{*2} http://nucleobytes.com/4peaks/

^{*3} http://technelysium.com.au/wp/chromaspro/

【参考資料7】プライマーの出典,由来

Primer	出典,由来
SK38	Ou CY, et al. (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood
	mononuclear cells. <i>Science</i> 239(4837):295-297.
RT20de	Shafer RW, Eisen JA, Merigan TC, & Katzenstein DA (1997) Sequence and drug susceptibility
	of subtype C reverse transcriptase from human immunodeficiency virus type 1 seroconverters
	in Zimbabwe. <i>J. Virol.</i> 71(7):5441-5448.
DRPRO5	国立感染症研究所で設計されたプライマー
DRRT4L	
DRPR01M	
DRPR02L	
DRRT3	
DRRT10	
DRRT13	
DRRT14	
DRRT15L	
DRRT16	
DRRT26	
DRRT27	
DRRT28	
DRRT29	
KL1S	JEQS program の参加施設で設計されたプライマー
KL2S	
K1	Ibe S, Shibata N, Utsumi M, & Kaneda T (2003) Selection of human immunodeficiency virus
U13	type 1 variants with an insertion mutation in the p6(gag) and p6(pol) genes under highly active
K4	antiretroviral therapy. <i>Microbiol. Immunol.</i> 47(1):71-79.
U12	
T12	相澤佐織, 蜂谷敦子, 井田節子, 立川夏夫, 菊池 嘉, 青木 真, 岡 慎一 (2000) 抗 HIV 無治療
	患者に対する Zidovudine/Lamivudine/Indinavir 併用療法の2年間の治療経過. <i>感染症誌</i> 74:128-
	133.
B2	K1, U13, K4, U12 を使用している施設で設計されたプライマー

【HIV 薬剤耐性検査標準化ワーキンググループ】

菊地 正, 吉村和久, 椎野禎一郎(国立感染症研究所)

吉田 繁(北海道医療大学)

蜂谷敦子,松田昌和(国立名古屋医療センター)

岡田清美、伊部史朗、和山行正(北里大塚バイオメディカルアッセイ研究所)

齊藤浩一(LSI メディエンス)

加藤真吾 (慶応義塾大学)

林田庸総 (国立国際医療研究センター)

【連絡先】

吉田 繁(北海道医療大学)

002-8072 札幌市北区あいの里2条5丁目1

Phone: 011-778-9062 Fax: 011-778-8941

E-mail: shiyoshi@hoku-iryo-u.ac.jp